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ABSTRACT

Let D be an arbitrary division ring and Mn(D) the multiplicative semi-

group of all n × n matrices over D. We describe the general form of

endomorphisms of Mn(D).

1. Introduction and statement of the main results

Let D be a division ring and n a positive integer. We denote by Mn(D)

the set of all n × n matrices over D. In this paper we study multiplica-

tive maps φ : Mn(D) → Mn(D), that is, maps satisfying φ(AB) = φ(A)φ(B),

A,B ∈Mn(D). The problem of characterizing multiplicative maps on matrices

over a principal ideal domain was solved by Jodeit and Lam [10]. Pierce [13]

showed that their result does not hold for matrices over an arbitrary integral

domain. The motivation to study multiplicative maps on matrices over an arbi-

trary division ring comes from the Wedderburn–Artin theorem [4, p. 44] stating

that every simple artinian ring is isomorphic to a matrix ring over a division

ring. The methods of Jodeit and Lam do not work in our non-commutative

setting. In fact, the starting part of our proof will be the same as in the pa-

per of Jodeit and Lam. After the first step we will use a completely different
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approach based on the observation that the set of idempotents is invariant un-

der every multiplicative map. Thus, our proof depends heavily on some recent

results concerning the structure of maps on idempotents preserving order or

orthogonality [15].

Let us start with examples of multiplicative maps onMn(D). Following Jodeit

and Lam we will call a multiplicative map φ : Mn(D) → Mn(D) degenerate

if φ(A) = 0 for every singular A ∈ Mn(D). Let φ : Mn(D) → Mn(D) be a

degenerate multiplicative map and denote φ(I) = P . Then P is an idempotent

matrix. It follows (see the second section) that there exists an invertible matrix

S ∈Mn(D) such that

SPS−1 =

[

I 0

0 0

]

,

where I is the r× r identity matrix for some integer r, 0 ≤ r ≤ n. If r = 0, then

clearly, φ = 0. So, assume that r > 0. From φ(A) = φ(I)φ(A)φ(I), A ∈Mn(D),

we conclude that the map A 7→ Sφ(A)S−1 can be considered as a multiplicative

degenerate map from Mn(D) →Mr(D) (for each A we take the upper left r× r

corner of Sφ(A)S−1; all entries outside this corner are equal to zero) sending

the n × n identity matrix into the r × r identity matrix. For every invertible

A ∈ Mn(D) we have φ(A)φ(A−1) = I, and because every singular matrix is

mapped into the zero matrix, we have arrived at the problem of characterizing

homomorphisms ψ from GLn(D) into GLr(D), r ≤ n. Such homomorphisms

can be viewed as representations of the full matrix group GLn(D) in GLr(D).

The theory of group representations is well-developed. The results are highly

non-trivial even in the case when D is a field (see, e.g., [6] and [16]). Let us

mention here that the case r < n is much easier than the case n = r. If

r < n, then every homomorphism ψ from GLn(D) into GLr(D) is of the form

ψ(A) = ϕ(detA) for some homomorphism ϕ : D
∗/C → GLr(D) [3]. Here, D

∗

is the multiplicative group of all non-zero elements of D, C is the commutator

subgroup of D
∗, and detA denotes the Dieudonné’s determinant of A (for the

definition and some basic properties see [1], [2], and [12]).

Let us continue with non-degenerate examples. If A = [aij ] ∈ Mn(D) is any

matrix and σ : D → D an endomorphism of division ring D, then we denote by

Aσ the matrix obtained from A by applying σ entrywise, Aσ = [aij ]
σ = [σ(aij)].

Clearly, for every invertible matrix T ∈ Mn(D) and every endomorphism σ of
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D the map φ : Mn(D) →Mn(D) defined by

(1) φ(A) = TAσT−1, A ∈Mn(D),

is multiplicative.

As above, we denote by C the commutator subgroup of D
∗. We adjoin to

the group D
∗/C a zero element with the obvious multiplication, and denote

the semigroup thus obtained by D. Let ϕ : D
∗/C → GLp(D), p < n, be a

homomorphism of groups. We extend it to a multiplicative map from D into

Mp(D) by defining ϕ(0) = 0. Let further T ∈ Mn(D) be an invertible matrix.

Define φ : Mn(D) →Mn(D) by

(2) φ(A) = T

[

ϕ(detA) 0

0 P

]

T−1, A ∈Mn(D).

Here, P denotes an (n−p)×(n−p) idempotent matrix. Then φ is multiplicative.

Let us mention here that in the case when p = 0 we have the constant map,

φ(A) = Q, A ∈Mn(D). Here, Q = TPT−1.

Finally, let D = F be a field. For each A ∈ Mn(F) we denote by A∗ the

matrix of its cofactors. Let T ∈ Mn(F) be an invertible matrix and σ : F → F

an endomorphism of the field F. Then the map φ : Mn(F) →Mn(F) defined by

(3) φ(A) = T (Aσ)∗T−1, A ∈Mn(F),

is multiplicative. The question here is whether one can construct in a similar

way multplicative maps on matrices over non-commutative division rings. Of

course, in the non-commutative setting one would expect that the matrix A∗

will be defined in a similar way as in the commutative case with the Dieudonné’s

determinant instead of the usual determinant. It turns out that the answer is

negative. So, the structural result in the non-commutative case is even simpler

than in the commutative case.

Theorem 1.1: Let D be a non-commutative division ring and n ≥ 2 an integer.

Assume that φ : Mn(D) →Mn(D) is a non-degenerate multiplicative map. Then

φ is either of the form (1), or of the form (2), where T , P , σ and ϕ are as above.

Theorem 1.2: Let D be a division ring and n ≥ 2 an integer. Assume that

φ : Mn(D) → Mn(D) is a non-degenerate multiplicative map. Then φ is either

of the form (1), or of the form (2), or D is commutative and φ is of the form

(3). Here, T , P , σ and ϕ are as above.
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Corollary 1.3: Let D be a division ring and n,m integers with n ≥ 2 and

n > m. Assume that φ : Mn(D) → Mm(D) is a non-degenerate multiplicative

map. Then φ is of the form (2), where T ∈Mm(D) is invertible, ϕ : D →Mp(D)

is a non-zero homomorphism with ϕ(0) = 0, and P is an (m − p) × (m − p)

idempotent matrix, 0 ≤ p < m.

Let us conclude this section with some brief historical remarks. Automor-

phisms of matrix semigroups over fields were characterized by Gluskin [5] and

Halezov [7, 8]. As already mentioned, these results were generalized by Jodeit

and Lam [10] who described the general form of non-degenerate endomorphisms

of matrix semigroups over principal ideal domains. The main tool in our proof

is a structural result for maps on rank one idempotents preserving orthogonal-

ity. The structural problem for such maps is closely related to the problem of

describing order-preserving maps on idempotent matrices [15]. Automorphisms

of the partially ordered sets of idempotent matrices or operators were character-

ized by Ovchinnikov [11]. He was mainly interested in the infinite-dimensional

case because of applications in physics (see the review MR 95a:46093). In the

real matrix case his result was substantionally improved in [14]. This improve-

ment was a main tool in the study of geometry of matrices. Because of further

applications in this direction a systematic study of order preserving and orthog-

onality preserving maps on idempotent matrices over division rings was carried

out in [15]. Later on we realized that these results can be applied also to solve

the problem treated in this paper.

2. Notation and some preliminary results

Let D be a division ring, n a positive integer, and Mn(D) the set of all n × n

matrices over D. The symbol Eij , 1 ≤ i, j ≤ n, will be used for a matrix having

all entries zero except the (i, j)-entry which is equal to 1. By Pn(D) we denote

the set of all n× n idempotent matrices, Pn(D) = {P ∈Mn(D) : P 2 = P}.

Let us recall first the definition of the rank of an n×n matrix A with entries

in a division ring D. We will denote by D
n the set of all 1 × n matrices and

consider it always as a left vector space over D. Correspondingly, we have the

right vector space of all n×1 matrices t
D

n. We first take the left vector subspace

of D
n generated by the rows of A (the row space of A) and define the row rank of

A to be the dimension of this subspace. The column rank of A is the dimension
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of the right vector space generated by the columns of A. This space is called

the column space of A. These two ranks are equal for every matrix over D and

this common value is called the rank of a matrix. If rankA = r then there exist

invertible matrices T, S ∈Mn(D) such that

(4) TAS =

[

Ir 0

0 0

]

.

Here, Ir is the r×r identity matrix and the zeroes stand for zero matrices of the

appropriate size. In particular, if rankA ≤ rankB, then A = CBD for some

C,D ∈ Mn(D). Rank satisfies the triangle inequality, that is, rank(A + B) ≤

rankA + rankB for every pair A,B ∈ Mn(D) [9, p. 46, Exercise 2]. Note that

in general rankA need not be equal to rank tA. Here, tA denotes the transpose

of A. However, if τ : D → D is a non-zero anti-endomorphism of D (additive

map satisfying τ(λµ) = τ(µ)τ(λ), λ, µ ∈ D), then rankA = rankt(Aτ ).

Assume that A,B ∈ Mn(D). Since the multiplication in D is not necessarily

commutative we do not have t(AB) = tB tA in general. But if τ is an anti-

endomorphism of D then

t[(AB)τ ] = t(Bτ ) t(Aτ ).

As usual we will identify n × n matrices with linear operators acting on

D
n. Namely, each n × n matrix A gives rise to a linear operator defined by

x 7→ xA, x ∈ D
n. Then the rank of the matrix A is the dimension of the

image ℑA of the corresponding operator A. The kernel of an operator A,

KerA = {x ∈ D
n : xA = 0}, is the set of all vectors x ∈ D

n satisfying x(ty) = 0

for every ty from the column space of A. Note that n = rankA+ dim KerA.

In the sequel we shall need the following fact that is well-known for idem-

potent matrices over fields and can be also generalized to idempotent matrices

over division rings [9, p. 62, Exercise 1]. Assume that P1, . . . , Pk ∈ Pn(D) are

pairwise orthogonal, that is, PiPj = PjPi = 0 whenever i 6= j. Denote by ri

the rank of Pi. Then there exists an invertible matrix T ∈Mn(D) such that for

each i, 1 ≤ i ≤ k, we have

TPiT
−1 = diag(0, . . . , 0, 1, . . . , 1, 0, . . . , 0)

where diag(0, . . . , 0, 1, . . . , 1, 0, . . . , 0) is the diagonal matrix in which all the

diagonal entries are zero except those in (r1 + · · ·+ri−1 +1)st to (r1 + · · ·+ri)th

rows.
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In the proof of our main results we will need the following three simple lem-

mas.

Lemma 2.1: Let A,B,C ∈ Mn(D). Assume that B is of rank one and

ABC = 0. Then AB = 0 or BC = 0.

Proof. As B is of rank one it can be written as B = (tb)a for some non-zero

vectors a ∈ D
n and tb ∈ t

D
n. It is now clear that ABC = 0 implies Atb = 0 or

aC = 0.

Lemma 2.2: Let A,B ∈ Mn(D) be matrices of rank at most one. If

rank(I −A−B) = n− 2, then A and B are orthogonal rank one idempotents.

Proof. We have I = A + B + S for some S ∈ Mn(D) of rank n − 2. As

rank is subadditive both A and B must be of rank one. Identifying matrices

with operators we see from x = xI = xA + xB + xS, x ∈ D
n, that D

n =

ℑA+ ℑB + ℑS. Since the dimensions of these images are one, one, and n− 2,

respectively, we actually have D
n = ℑA ⊕ ℑB ⊕ ℑS. For x ∈ ℑA we have

x = xI = xA + xB + xS ∈ ℑA, and since the above sum is a direct sum, the

vectors xB and xS must be zero, while xA = x. Similarly, if x ∈ ℑB then

xB = x, and xA = xS = 0 and also x ∈ ℑS yields x = xS and xA = xB = 0.

Thus, all three operators A, B and S are idempotents and they are pairwise

orthogonal. In fact, the same proof shows that if the n × n identity matrix is

the sum of matrices Aj of rank rj , j = 1, . . . , k, and if r1 + · · · + rk ≤ n, then

r1 + · · ·+ rk = n, and the Aj ’s are pairwise orthogonal idempotents. Results of

this type can be found in the literature but as far as we know only for matrices

over a field.

Lemma 2.3: Let P,Q ∈ Pn(D) be of rank one. Then the following two state-

ments are equivalent:

• PQ = 0,

• (I −Q)(I − P ) is of rank n− 2.

Proof. Assume first that PQ = 0. Then straightforward computations show

that Q(I − P ) is an idempotent and that Q(I − P ) and P are orthogonal.

The matrix Q(I − P ) is non-zero, since otherwise we would have Q = QP ,

and consequently, Q = Q2 = QPQ = 0, a contradiction. Thus, the matrix

Q(I − P ) + P , which is a sum of two orthogonal rank one idempotents, is
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an idempotent of rank two, which further yields that I − (Q(I − P ) + P ) =

(I −Q)(I − P ) is of rank n− 2.

To prove the other direction assume that I−Q(I−P )−P is of rank n−2. Since

both matrices Q(I−P ) and P are of rank at most one, they are, by the previous

lemma, orthogonal idempotents of rank one. In particular, PQ(I −P ) = 0. By

Lemma 2.1, PQ = 0.

3. Proof of main results

Let D be an arbitrary division ring, n an integer satisfying n ≥ 2, and let

φ : Mn(D) → Mn(D) be a non-degenerate multiplicative map. Denote by r the

first integer such that φ(A) 6= 0 for some A ∈ Mn(D) with rankA = r. In the

first step of our proof (here we follow the idea of Jodeit and Lam) we will prove

that either r = 0, or r = 1, or r = n− 1.

If r = 0 we are done. So, assume that 0 < r < n (in the case r = n our map

would be degenerate). Then φ(A) = 0 for everyA with rankA < r and φ(A) 6= 0

for every A with rankA ≥ r. Indeed, the first part of this statement is trivial.

Let B ∈Mn(D) be a matrix of rank r such that φ(B) 6= 0 and A any matrix of

rank at least r. Then we already know that there are matrices C and D such

that B = CAD. So, φ(A) = 0 would imply that φ(B) = φ(C)φ(A)φ(D) = 0, a

contradiction. Let E be the set of all diagonal idempotents E of rank r, that is,

the set of all diagonal matrices with r ones and n − r zeroes on the diagonal.

The product of any pair of different elements of E has rank less than r. Thus, we

have a system of
(

n

r

)

pairwise orthogonal non-zero idempotents {φ(E) : E ∈ E}.

Pairwise orthogonal idempotents are simultaneously diagonalizable. Hence,

(

n

r

)

≤ n,

and consequently, either r = 1 or r = n− 1, as desired. Moreover, in the case

when r = 1 we see that E11 is mapped into a rank one projection. If B is

any rank one matrix, then there exist invertible matrices T, S ∈ Mn(D) such

that B = TE11S, which further yields φ(B) = φ(T )φ(E11)φ(S) and φ(E11) =

φ(T−1)φ(B)φ(S−1). Thus, rankφ(B) = 1. Similarly, if r = n − 1, then every

matrix of rank n− 1 is mapped into a rank one matrix.

Exactly the same idea yields that if ξ : Mn(D) →Mm(D), m < n, is a multi-

plicative map with ξ(0) = 0, then ξ is degenerate.
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So, coming back to multiplicative maps from Mn(D) into itself we have three

possibilities. Let us start with the case when r = 0. Then φ(0) is a non-zero

idempotent. After composing φ with an appropriate similarity transformation

A 7→ SAS−1 we may assume that

φ(0) =

[

0 0

0 Ip

]

,

where Ip denotes the p×p identity matrix, 1 ≤ p ≤ n. From φ(0) = φ(A)φ(0) =

φ(0)φ(A), A ∈ Mn(D), we conclude that there exists a multiplicative map

ξ : Mn(D) →Mn−p(D) such that

φ(A) =

[

ξ(A) 0

0 Ip

]

, A ∈Mn(D).

If p = n, then φ(A) = I for every A ∈ Mn(D). So, let 1 ≤ p < n. By

the previous paragraph, ξ is degenerate. The Dieudonné’s determinant of any

singular matrix A is zero. It is now easy to complete the proof using the

description of homomorphisms from GLn(D) into GLk(D), k < n, given in the

Introduction. Moreover, the above arguments yield also Corollary 1.3. Indeed,

under the assumptions of Corollary 1.3 the only possible value of r is r = 0.

We continue with the case when r = 1. Then every idempotent of rank one

is mapped into an idempotent of rank one. For two idempotents P,Q ∈Mn(D)

of rank one we have PQ = QP = 0 if and only if φ(P )φ(Q) = φ(Q)φ(P ) =

φ(0) = 0. In other words, the restriction of φ to P 1

n(D), the set of all rank

one idempotents, considered as a map from P 1
n(D) into itself, preserves or-

thognality in both directions. It is injective. Indeed, if φ(P ) = φ(Q) for

P,Q ∈ P 1

n(D), then for every idempotent R of rank one we have R ⊥ P if

and only if φ(R) ⊥ φ(P ) = φ(Q) if and only if R ⊥ Q. It follows easily that

P = Q. Here we have to distinguish two cases. Assume first that n ≥ 3. Then

by [15, Theorem 4.7], there exist a non-singular matrix T ∈ Mn(D) and either

a non-zero endomorphism σ : D → D such that

(5) φ(P ) = TP σT−1, P ∈ P 1

n(D),

or a nonzero anti-endomorphism τ : D → D such that

φ(P ) = T t(P τ )T−1, P ∈ P 1

n(D).



Vol. 163, 2008 ENDOMORPHISMS OF MATRIX SEMIGROUPS 133

In the second case we have

0 = φ(0) = φ(E22(E11 + E12)) = φ(E22)φ(E11 + E12)

= TE22T
−1T (E11 + E21)T

−1 = TE21T
−1,

a contradiction. Thus, this possibility cannot occur. Hence, we have (5), and

after replacing φ by the map A 7→ T−1φ(A)T we may assume that φ(P ) = P σ,

P ∈ P 1

n(D). It follows that for every pair i, j ∈ {1, . . . , n}, i 6= j, and every

λ ∈ D we have

φ(λEij) = φ((Eii + λEij)Ejj) = φ(Eii + λEij)φ(Ejj ) = (Eii + σ(λ)Eij)Ejj

= σ(λ)Eij .

This further yields that

φ(λEii) = φ(λEijEji) = σ(λ)EijEji = σ(λ)Eii.

Let A ∈ Mn(D) be an arbitrary matrix and let i, j be any pair of integers,

1 ≤ i, j ≤ n. For every B ∈ Mn(D) we denote by Bij the (i, j)-entry of B.

Then

φ(A)ijEij = Eiiφ(A)Ejj = φ(Eii)φ(A)φ(Ejj ) = φ(EiiAEjj) = φ(AijEij)

= σ(Aij)Eij .

Thus, for every A ∈Mn(D) we have φ(A) = Aσ, as desired.

In the case when n = 2 we cannot apply [15, Theorem 4.7]. So, in this

case we will give a straightforward proof. The same idea can be applied also

in higher dimensions but we decided to include the above argument as it is

slightly shorter. We know that φ(E11) and φ(E22) are orthogonal rank one

idempotents. After composing φ with an appropriate similarity transformation

we may assume with no loss of generality that φ(Eii) = Eii, i = 1, 2. Let

A,B ∈M2(D) be any matrices and i, j ∈ {1, 2}. We will show that if Aij = Bij

then φ(A)ij = φ(B)ij . Indeed, from

EiiAEjj = EiiBEjj

we conclude that

Eiiφ(A)Ejj = φ(Eii)φ(A)φ(Ejj ) = φ(EiiAEjj) = φ(EiiBEjj) = Eiiφ(B)Ejj ,

and thus, φ(A)ij = φ(B)ij . It follows that

φ

([

λ1 λ2

λ3 λ4

])

=

[

σ(λ1) τ(λ2)

ξ(λ3) η(λ4)

]

, λ1, λ2, λ3, λ4 ∈ D,
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where σ, τ, ξ, η : D → D are maps with σ(1) = η(1) = 1. From φ(0) = 0 we get

that σ(0) = τ(0) = ξ(0) = η(0) = 0. We know that φ(E12) = µE12 for some

non-zero µ ∈ D. Replacing the map φ by

A 7→

[

µ−1 0

0 1

]

φ(A)

[

µ 0

0 1

]

we may assume with no loss of generality that φ has all the properties obtained

so far and φ(E12) = E12. Now, because φ(E21) = δE21 for some δ ∈ D we get

from E12E21 = E11 that φ(E21) = E21. For every λ ∈ D we have

[

λ 0

0 0

][

0 1

0 0

]

=

[

0 λ

0 0

]

.

Applying φ on both sides of the equality we conclude that σ(λ) = τ(λ), λ ∈ D.

In the same way we prove that σ = τ = ξ = η. From
[

λ 0

0 0

][

µ 0

0 0

]

=

[

λµ 0

0 0

]

, λ, µ ∈ D,

we conclude that σ is multiplicative. And finally, from
[

1 λ

0 1

] [

1 µ

0 1

]

=

[

1 λ+ µ

0 1

]

, λ, µ ∈ D,

we get the additivity of σ. This completes the proof in this special case.

It remains to consider the case when r = n − 1. If n = 2, then r = 1

and we are done by the previous case. So, we may assume that n ≥ 3. We

know that every matrix of rank ≤ n− 2 is mapped into the zero matrix, while

every matrix of rank n− 1 is mapped into some rank one matrix. Let P be an

idempotent of rank one. Then I−P is of rank n−1, and thus φ(I−P ) is a rank

one idempotent. We define a map ψ : P 1
n(D) → P 1

n(D) by ψ(P ) = φ(I − P ),

P ∈ P 1

n(D). By Lemma 2.3, we have PQ = 0 if and only if (I − Q)(I − P ) is

of rank n− 2, P,Q ∈ P 1

n(D). The product of two n× n matrices both of rank

n− 1 is either of rank n− 2, or of rank n− 1. Thus, φ((I −Q)(I − P )) = 0 if

and only if PQ = 0. In other words, for every pair of idempotents P,Q ∈ P 1
n

the following two statements are equivalent:

• PQ = 0,

• ψ(Q)ψ(P ) = 0.
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It follows that P ⊥ Q if and only if ψ(P ) ⊥ ψ(Q). As in the case when r = 1 this

yields the injectivity of ψ and thus, we can apply [15, Theorem 4.7]. According

to this theorem we have two possibilities for ψ and as in the proof of the special

case r = 1 we can apply the equivalence of the above two conditions to rule

out one of the possibilities, thus coming to the conclusion that there exist a

non-singular matrix T ∈ Mn(D) and a non-zero anti-endomorphism σ : D → D

such that

ψ(P ) = T t(P σ)T−1, P ∈ P 1

n(D).

As before, we may assume with no loss of generality that

ψ(P ) = φ(I − P ) = t(P σ), P ∈ P 1

n(D).

For A ∈Mn(D) and i, j ∈ {1, . . . , n} we denote by A(i, j) the (n−1)×(n−1)

matrix obtained from A by deleting the ith row and the jth column. In the

next step we will show that for every A ∈Mn(D) and every pair of integers i, j,

1 ≤ i, j ≤ n, the (i, j)-entry of φ(A) depends only on A(i, j). This follows from

(6)
φ(A)ijEij = Eiiφ(A)Ejj = φ(I − Eii)φ(A)φ(I − Ejj)

= φ((I − Eii)A(I − Ejj)).

Thus, there exist maps φij : Mn−1(D) → D, 1 ≤ i, j ≤ n, such that for every

A ∈Mn(D) we have

φ(A)ij = φij(A(i, j)), 1 ≤ i, j ≤ n.

Next, we will show that if for some A ∈Mn(D) and some pair of integers i, j,

1 ≤ i, j ≤ n, the matrix A(i, j) is singular, then φ(A)ij = 0. Indeed, if A(i, j)

is singular, then (I − Eii)A(I − Ejj) is of rank at most n − 2, and because φ

maps matrices of rank at most n− 2 into the zero matrix, we get from (6) that

φ(A)ij is zero.

In particular,

φ













































0 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1













































=























0 λ1 0 0 . . . 0

λ2 0 0 0 . . . 0

0 0 λ3 0 . . . 0

0 0 0 λ4 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . λn






















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for some λ1, . . . , λn ∈ D. We know that

φ













































1 0 0 . . . 0 1

0 1 0 . . . 0 1

0 0 1 . . . 0 1
...

...
...

. . .
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 0













































=























0 0 0 . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

−1 −1 −1 . . . −1 1























.

Applying φ to both sides of the equality






















0 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1













































1 0 0 . . . 0 1

0 1 0 . . . 0 1

0 0 1 . . . 0 1
...

...
...

. . .
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 0













































0 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1























=























1 0 0 . . . 0 1

0 1 0 . . . 0 1

0 0 1 . . . 0 1
...

...
...

. . .
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 0























we get that

φ













































0 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1













































= ±























0 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1























.

Let A ∈Mn−1(D) be an arbitrary matrix. We know that the n× n matrix

[

0 0

0 A

]

,
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where the zeroes denote the zero matrices of the sizes 1 × 1, 1 × (n − 1), and

(n− 1)× 1, respectively, is mapped by φ into φ11(A)E11. Similarly, the matrix
[

E 0

0 I

][

0 0

0 A

]

,

where

E =

[

0 1

1 0

]

and I is the (n − 2) × (n − 2) identity matrix, is mapped into φ21(A)E21. On

the other hand, this matrix is mapped into

φ

([

E 0

0 I

])

φ

([

0 0

0 A

])

= ±

[

E 0

0 I

]

φ11(A)E11 = ±φ11(A)E21.

Thus, φ21 = ±φ11. In the same way we prove first that φ21 = ±φ22, and then

φij = ±φ11, 1 ≤ i, j ≤ n.

We have

φ11(AB)E11 = φ

([

0 0

0 AB

])

= φ

([

0 0

0 A

])

φ

([

0 0

0 B

])

= φ11(A)φ11(B)E11, A,B ∈Mn−1(D).

Thus φ11 is multiplicative. By what we have proved at the beginning of

this section, it must be degenerate. So, there exists a mulitiplicative map

ξ : D → D such that φ11(A) = ξ(detA(1, 1)), A ∈ Mn(D). Consequently,

φij(A) = ±ξ(detA(i, j)), A ∈Mn(D), 1 ≤ i, j ≤ n.

Clearly, if both µ1, µ2 ∈ D belong to the range of ξ, then they commute.

It follows that the set of all (i, j)-entries of matrices φ(A), A ∈ Mn(D), is a

commutative subset of D. On the other hand, φ(E11 + · · ·+En−1,n−1 +λE1n) =

Enn − σ(λ)En1, λ ∈ D. Assume first that D is not commutative. Then take

λ, µ ∈ D such that λµ−µλ 6= 0. As σ is non-zero we have σ(µ)σ(λ)−σ(λ)σ(µ) 6=

0, and thus the set of (n, 1)-entries of the matrices φ(E11+· · ·+En−1,n−1+λE1n),

λ ∈ D, is not commutative, a contradiction.

Thus, this last special case that we are treating can occur only if D = F is com-

mutative. In this case we know that the (i, j)-entry of φ(A) is ±ξ(detA(i, j)),

where now det stands for the usual determinant. We further know how φ acts

on the set of all idempotents P of rank n− 1. Because the (i, j)-entry of φ(P )

is the corresponding cofactor of the matrix P σ (note that in the commutative
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case anti-endomorphisms are actually endomorphisms), we conclude that every

A is mapped by φ into the matrix of the cofactors of Aσ. This completes the

proof of our main theorems.

Remark: Note that we could avoid the use of [15, Theorem 4.7] in the proof of

the special case when r = 1. However, in the case when r = n − 1 our proof

essentially depends on this theorem.
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